LLaMA 4 Scoutは170億のパラメータを持つモデルで、16のアクティブな専門家を活用するMixture-of-Expertsアーキテクチャを採用し、同カテゴリ内で最も優れたマルチモーダルモデルとして位置づけられています。Gemma 3、Gemini 2.0 Flash-Lite、Mistral 3.1などの競合他社を、さまざまなベンチマークで一貫して上回っています。それにもかかわらず、LLaMA 4 Scoutは非常に効率的で、Int4量子化を用いることでNVIDIA H100 GPU1台で動作可能です。また、業界トップクラスの1,000万トークンのコンテキストウィンドウを備え、ネイティブにマルチモーダルで、テキスト、画像、動画をシームレスに処理し、実用的な高度なアプリケーションに対応します。
Qwen2-VL のリリースから過去5か月間で、開発者はこれを基に新しいモデルを構築し、貴重なフィードバックを提供しました。今回の Qwen2.5-VL は、画像・テキスト・チャートの正確な分析や、構造化された JSON 出力によるオブジェクトのローカライズ機能を強化しています。また、長尺の動画を理解し、重要なイベントを特定し、コンピューターやスマートフォン上のツールと対話するエージェントとして機能します。モデルのアーキテクチャには、動的な動画処理機能と最適化された ViT エンコーダーが組み込まれ、処理速度と精度が向上しています。
Llama 4 Scout | Qwen2.5-VL-32B | |
---|---|---|
ウェブサイト
| ||
プロバイダー
| ||
チャット
| ||
リリース日
| ||
モダリティ
| テキスト 画像 動画 | テキスト 画像 動画 |
APIプロバイダー
| Meta AI, Hugging Face, Fireworks, Together, DeepInfra | - |
知識のカットオフ日
| 2025-04 | 不明 |
オープンソース
| はい (ソース) | はい (ソース) |
入力料金
| 利用不可 | $0 |
出力料金
| 利用不可 | $0 |
MMLU
| 利用不可 | 78.4% ソース |
MMLU-Pro
| 74.3% Reasoning & Knowledge ソース | 49.5% |
MMMU
| 69.4% Image Reasoning ソース | 70% |
HellaSwag
| 利用不可 | 利用不可 |
HumanEval
| 利用不可 | 利用不可 |
MATH
| 利用不可 | 82.2% |
GPQA
| 57.2% Diamond ソース | 46.0% Diamond |
IFEval
| 利用不可 | 利用不可 |
SimpleQA
| - | - |
AIME 2024 | - | - |
AIME 2025 | - | - |
Aider Polyglot
| - | - |
LiveCodeBench v5
| - | - |
Global MMLU (Lite)
| - | - |
MathVista
| - | - |
モバイルアプリケーション | - | - |
Compare AI. Test. Benchmarks. モバイルアプリチャットボット, Sketch
Copyright © 2025 All Right Reserved.